Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract When a star undergoes core collapse, a vast amount of energy is released in a ∼10 s long burst of neutrinos of all species. Inverse beta decay in the star’s hydrogen envelope causes an electromagnetic cascade that ultimately results in a flare of gamma rays—an “echo” of the neutrino burst—at the characteristic energy of 0.511 MeV. We study the phenomenology and detectability of this flare. Its luminosity curve is characterized by a fast, seconds-long rise and an equally fast decline, with a minute- or hour-long plateau in between. For a near-Earth star (distanceD≲ 1 kpc) the echo will be observable at near future gamma-ray telescopes with an effective area of 103cm2or larger. Its observation will inform us on the envelope size and composition. In conjunction with the direct detection of the neutrino burst, it will also give information on the neutrino emission away from the line of sight and will enable tests of neutrino propagation effects between the stellar surface and Earth.more » « less
-
Abstract We explore neutrino emission from nonrotating, single-star models across six initial metallicities and 70 initial masses from the zero-age main sequence to the final fate. Overall, across the mass spectrum, we find metal-poor stellar models tend to have denser, hotter, and more massive cores with lower envelope opacities, larger surface luminosities, and larger effective temperatures than their metal-rich counterparts. Across the mass–metallicity plane we identify the sequence (initial CNO →14N →22Ne →25Mg →26Al →26Mg →30P →30Si) as making primary contributions to the neutrino luminosity at different phases of evolution. For the low-mass models we find neutrino emission from the nitrogen flash and thermal pulse phases of evolution depend strongly on the initial metallicity. For the high-mass models, neutrino emission at He-core ignition and He-shell burning depends strongly on the initial metallicity. Antineutrino emission during C, Ne, and O burning shows a strong metallicity dependence with22Ne(α,n)25Mg providing much of the neutron excess available for inverse-βdecays. We integrate the stellar tracks over an initial mass function and time to investigate the neutrino emission from a simple stellar population. We find average neutrino emission from simple stellar populations to be 0.5–1.2 MeV electron neutrinos. Lower metallicity stellar populations produce slightly larger neutrino luminosities and averageβdecay energies. This study can provide targets for neutrino detectors from individual stars and stellar populations. We provide convenient fitting formulae and open access to the photon and neutrino tracks for more sophisticated population synthesis models.more » « less
-
An Expanded Set of Los Alamos OPLIB Tables in MESA: Type-1 Rosseland-mean Opacities and Solar ModelsAbstract We present a set of 1194 Type-1 Rosseland-mean opacity tables for four different metallicity mixtures. These new Los Alamos OPLIB atomic radiative opacity tables are an order of magnitude larger in number than any previous opacity table release, and span regimes where previous opacity tables have not existed. For example, the new set of opacity tables expands the metallicity range toZ= 10−6toZ= 0.2, which allows improved accuracy of opacities at low and high metallicity, increases the table density in the metallicity rangeZ= 10−4toZ= 0.1 to enhance the accuracy of opacities drawn from interpolations across neighboring metallicities, and adds entries for hydrogen mass fractions betweenX= 0 andX= 0.1 includingX= 10−2, 10−3, 10−4, 10−5, 10−6that can improve stellar models of hydrogen deficient stars. We implement these new OPLIB radiative opacity tables inMESAand find that calibrated solar models agree broadly with previously published helioseismic and solar neutrino results. We find differences between using the new 1194 OPLIB opacity tables and the 126 OPAL opacity tables range from ≈20% to 80% across individual chemical mixtures, up to ≈8% and ≈15% at the bottom and top of the solar convection zone respectively, and ≈7% in the solar core. We also find differences between standard solar models using different opacity table sources that are on par with altering the initial abundance mixture. We conclude that this new, open-access set of OPLIB opacity tables does not solve the solar modeling problem, and suggest the investigation of physical mechanisms other than the atomic radiative opacity.more » « less
-
Abstract Gravitational-wave (GW) detections of binary black hole (BH) mergers have begun to sample the cosmic BH mass distribution. The evolution of single stellar cores predicts a gap in the BH mass distribution due to pair-instability supernovae (PISNe). Determining the upper and lower edges of the BH mass gap can be useful for interpreting GW detections of merging BHs. We useMESAto evolve single, nonrotating, massive helium cores with a metallicity ofZ= 10−5, until they either collapse to form a BH or explode as a PISN, without leaving a compact remnant. We calculate the boundaries of the lower BH mass gap for S-factors in the range S(300 keV) = (77,203) keV b, corresponding to the ±3σuncertainty in our high-resolution tabulated12C(α,γ)16O reaction rate probability distribution function. We extensively test temporal and spatial resolutions for resolving the theoretical peak of the BH mass spectrum across the BH mass gap. We explore the convergence with respect to convective mixing and nuclear burning, finding that significant time resolution is needed to achieve convergence. We also test adopting a minimum diffusion coefficient to help lower-resolution models reach convergence. We establish a new lower edge of the upper mass gap asMlower≃ M⊙from the ±3σuncertainty in the12C(α,γ)16O rate. We explore the effect of a larger 3αrate on the lower edge of the upper mass gap, findingMlower≃ M⊙. We compare our results with BHs reported in the Gravitational-Wave Transient Catalog.more » « less
-
Abstract We explore changes in the adiabatic low-order g-mode pulsation periods of 0.526, 0.560, and 0.729M⊙carbon–oxygen white dwarf models with helium-dominated envelopes due to the presence, absence, and enhancement of22Ne in the interior. The observed g-mode pulsation periods of such white dwarfs are typically given to 6−7 significant figures of precision. Usually white dwarf models without22Ne are fit to the observed periods and other properties. The rms residuals to the ≃150−400 s low-order g-mode periods are typically in the range ofσrms≲ 0.3 s, for a fit precision ofσrms/P≲ 0.3%. We find average relative period shifts of ΔP/P≃ ±0.5% for the low-order dipole and quadrupole g-mode pulsations within the observed effective temperature window, with the range of ΔP/Pdepending on the specific g-mode, abundance of22Ne, effective temperature, and the mass of the white dwarf model. This finding suggests a systematic offset may be present in the fitting process of specific white dwarfs when22Ne is absent. As part of the fitting processes involves adjusting the composition profiles of a white dwarf model, our study on the impact of22Ne can provide new inferences on the derived interior mass fraction profiles. We encourage routinely including22Ne mass fraction profiles, informed by stellar evolution models, to future generations of white dwarf model-fitting processes.more » « less
-
Abstract We update the capabilities of the open-knowledge software instrument Modules for Experiments in Stellar Astrophysics (MESA). The newauto_diffmodule implements automatic differentiation inMESA, an enabling capability that alleviates the need for hard-coded analytic expressions or finite-difference approximations. We significantly enhance the treatment of the growth and decay of convection inMESAwith a new model for time-dependent convection, which is particularly important during late-stage nuclear burning in massive stars and electron-degenerate ignition events. We strengthenMESA’s implementation of the equation of state, and we quantify continued improvements to energy accounting and solver accuracy through a discussion of different energy equation features and enhancements. To improve the modeling of stars inMESA, we describe key updates to the treatment of stellar atmospheres, molecular opacities, Compton opacities, conductive opacities, element diffusion coefficients, and nuclear reaction rates. We introduce treatments of starspots, an important consideration for low-mass stars, and modifications for superadiabatic convection in radiation-dominated regions. We describe new approaches for increasing the efficiency of calculating monochromatic opacities and radiative levitation, and for increasing the efficiency of evolving the late stages of massive stars with a new operator-split nuclear burning mode. We close by discussing major updates toMESA’s software infrastructure that enhance source code development and community engagement.more » « less
An official website of the United States government
